Need help analysing and interpreting your data?
AltraBio is a contract research company expert in the analysis of biological and medical data through the use of statistical methods and artificial intelligence.
AltraBio is trusted worldwide as a partner for research and development projects by leading companies and university hospitals operating in various sectors including pharmaceuticals, medical devices, diagnostics, and dermato-cosmetics.
How can we work together?
Partnership
Development of computational tools for data analysis in regional/national/international consortia.
Examples of current and completed projects:
Subcontracting
Data analysis for companies and university hospitals.
-
Hundreds of completed projects
-
Regular customers including top 10 pharmas and leaders in cosmetics
Funding





NEWS
July 2023
The multi-level regulation of clownfish metamorphosis by thyroid hormones.
Congratulations to the teams of Vincent Laudet from Okinawa Institute of Science [...]
May 2023
AltraBio and Tercen announce their Partnership for automated gating in clinical studies.
AltraBio SAS, a leading company in data analysis and [...]
March 2023
Best Biological & Medical Data Analysis Research Company 2023 – Western Europe
We are proud to have been awarded the title [...]
LATEST PUBLICATIONS
2023
Roux, Natacha; Miura, Saori; Dussenne, Mélanie; Tara, Yuki; Lee, Shu-Hua; de Bernard, Simon; Reynaud, Mathieu; Salis, Pauline; Barua, Agneesh; Boulahtouf, Abdelhay; Balaguer, Patrick; Gauthier, Karine; Lecchini, David; Gibert, Yann; Besseau, Laurence; Laudet, Vincent
The multi-level regulation of clownfish metamorphosis by thyroid hormones Journal Article
In: Cell Rep, vol. 42, no. 7, pp. 112661, 2023, ISSN: 2211-1247.
@article{pmid37347665,
title = {The multi-level regulation of clownfish metamorphosis by thyroid hormones},
author = {Natacha Roux and Saori Miura and Mélanie Dussenne and Yuki Tara and Shu-Hua Lee and Simon de Bernard and Mathieu Reynaud and Pauline Salis and Agneesh Barua and Abdelhay Boulahtouf and Patrick Balaguer and Karine Gauthier and David Lecchini and Yann Gibert and Laurence Besseau and Vincent Laudet},
doi = {10.1016/j.celrep.2023.112661},
issn = {2211-1247},
year = {2023},
date = {2023-06-01},
urldate = {2023-06-01},
journal = {Cell Rep},
volume = {42},
number = {7},
pages = {112661},
abstract = {Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sanlaville, Amélien; Voissière, Aurélien; Poujol, Dominique; Hubert, Margaux; André, Suzanne; Perret, Clémence; Foy, Jean-Philippe; Goutagny, Nadège; Malfroy, Marine; Durand, Isabelle; Châlons-Cottavoz, Marie; Valladeau-Guilemond, Jenny; Saintigny, Pierre; Puisieux, Alain; Caux, Christophe; Michallet, Marie-Cécile; Puisieux, Isabelle; Bendriss-Vermare, Nathalie
CD4 T cells and neutrophils contribute to epithelial-mesenchymal transition in breast cancer Journal Article
In: bioRxiv, 2023.
@article{Sanlaville2023.02.15.528594,
title = {CD4 T cells and neutrophils contribute to epithelial-mesenchymal transition in breast cancer},
author = {Amélien Sanlaville and Aurélien Voissière and Dominique Poujol and Margaux Hubert and Suzanne André and Clémence Perret and Jean-Philippe Foy and Nadège Goutagny and Marine Malfroy and Isabelle Durand and Marie Châlons-Cottavoz and Jenny Valladeau-Guilemond and Pierre Saintigny and Alain Puisieux and Christophe Caux and Marie-Cécile Michallet and Isabelle Puisieux and Nathalie Bendriss-Vermare},
url = {https://www.biorxiv.org/content/early/2023/02/15/2023.02.15.528594},
doi = {10.1101/2023.02.15.528594},
year = {2023},
date = {2023-02-15},
urldate = {2023-01-01},
journal = {bioRxiv},
publisher = {Cold Spring Harbor Laboratory},
abstract = {Epithelial-mesenchymal transition (EMT) is a central oncogenic mechanism, contributing both to transformation and metastatic dissemination. Inflammation and innate immune cells are known to favor EMT induction, but the role of adaptive immunity still remains unclear. Using an original murine mammary tumor model in immune cell subpopulation depletion experiments, we demonstrated that tumor cells maintain their epithelial phenotype in mice deficient for adaptive immune response, but undergo EMT in the presence of T-cells. This phenotypic conversion involves the major contribution of CD4 T cells, but not CD8 T cells nor B cells, undoubtedly demonstrating the pro-EMT role of CD4 T cells specifically among adaptive immune cells. Moreover, combined intra-tumor immune infiltrate and transcriptomic analyses of murine mammary tumors with various EMT phenotype revealed an inverse correlation between mesenchymal tumor cell and intratumoral neutrophil proportions, due to the reduced ability of mesenchymal cells to recruit neutrophils. Last, selective in vivo depletion of neutrophils and transcriptomic analysis of human breast tumor cohorts demonstrated the pro-EMT role of neutrophils and suggest a cooperation with CD4 T cells in EMT promotion. Collectively, our data highlight a novel mechanism of EMT regulation by both innate and adaptive immune compartments.Competing Interest StatementThe authors have declared no competing interest.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Coutier, Julien; Auvré, Frédéric; Lemaître, Gilles; Lataillade, Jean-Jacques; Deleuze, Jean-François; Roméo, Paul-Henri; Martin, Michèle T; Fortunel, Nicolas O
MXD4/MAD4 Regulates Human Keratinocyte Precursor Fate Journal Article
In: J Invest Dermatol, vol. 143, no. 1, pp. 105–114.e12, 2023, ISSN: 1523-1747.
@article{pmid36007550,
title = {MXD4/MAD4 Regulates Human Keratinocyte Precursor Fate},
author = {Julien Coutier and Frédéric Auvré and Gilles Lemaître and Jean-Jacques Lataillade and Jean-François Deleuze and Paul-Henri Roméo and Michèle T Martin and Nicolas O Fortunel},
doi = {10.1016/j.jid.2022.07.020},
issn = {1523-1747},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {J Invest Dermatol},
volume = {143},
number = {1},
pages = {105--114.e12},
abstract = {Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNA‒mediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}